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Many real-world complex networks contain a significant amount of structural redundancy, in which multiple
vertices play identical topological roles. Such redundancy arises naturally from the simple growth processes
which form and shape many real-world systems. Since structurally redundant elements may be permuted
without altering network structure, redundancy may be formally investigated by examining network automor-
phism �symmetry� groups. Here, we use a group-theoretic approach to give a complete description of spectral
signatures of redundancy in undirected networks. In particular, we describe how a network’s automorphism
group may be used to directly associate specific eigenvalues and eigenvectors with specific network motifs.
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I. INTRODUCTION

Many complex real-world systems—from chemical reac-
tions inside cells �1� to technological systems such as the
world wide web �2�—may be represented as networks. Un-
derstanding the topological structure of these networks helps
understanding the behavior of the system on which they are
based. Thus, there is considerable interest in elucidating the
origin and form of common structural features of networks
�3–5�. Previous reports have identified a variety of features
which are common to a range of disparate networks includ-
ing the power-law distribution of vertex degrees �6–8�, the
“small-world” property �9�, and network construction from
motifs �10–12� among others.

Many common network features derive from common
ways in which real-world networks are formed and evolve.
So, for instance, growth with preferential attachment natu-
rally leads to a power-law vertex degree distribution �6�. As
another example, common replicative growth processes,
such as growth with duplication �13�, naturally endow net-
works with a certain degree of structural redundancy. Thus,
structural redundancy—in which multiple vertices play an
identical topological role—is common in real-world empiri-
cal networks �14�. In terms of system behavior, structural
redundancy can be beneficial since it naturally reinforces
against attack by providing structural “backups” should net-
work elements fail �15�. Thus, network redundancy is related
to system robustness �3,16�.

Intuitively, two vertices are topologically equivalent if
they may be permuted without altering network structure. A
permutation of the vertices of a network which does not af-
fect network adjacency is known as an automorphism and
the set of network automorphisms forms a group under com-
position of permutations. Thus, our intuitive notion of struc-
tural equivalence may be formally investigated using the

mathematical language of permutation groups. Crucially,
symmetric networks �those with a nontrivial automorphism
group� necessarily contain a certain amount of structural re-
dundancy. In accordance with the observation that common
growth processes naturally lead to structural redundancy,
many empirical networks have richly structured automor-
phism groups �14�. In this paper, we shall use the automor-
phism group to investigate the effect of redundancy on net-
work eigenvalue spectra.

Since graph eigenvalues are well known to be related to a
multitude of graph properties �17�, there has been consider-
able recent interest in studying the spectra of real-world
complex networks and their associated models �18–25�.
These studies have highlighted the fact that the spectral den-
sities of real-world networks commonly differ significantly
from those of the classical ensembles of random matrix
theory �21,26�. For example, in �21�, the spectral density of
Barabási-Albert “scale-free” networks �6� and Watts-Strogatz
small-world networks �9� are considered. Barabási-Albert
networks are found to have a spectral density which consists
of a “trianglelike” bulk with power-law tails, while Watts-
Strogatz small-world networks are found to have multiple
strong local maxima in their spectral densities which are re-
lated to the blurring of singularities in the spectral density of
the highly ordered k-ring structure upon which the Watts-
Strogatz model is based.

Similarly, although they are not usually highly ordered,
the spectral densities of real-world networks also often con-
tain singularities. For instance, singularities at the 0 and −1
eigenvalues are common. Previous discussions have related
the singularity at 0 to local multiplicities in vertices of de-
gree 1 �stars� and the singularity at −1 to complete subgraphs
�cliques� �19–23� although these explanations are not ex-
haustive. For example, the graphs in Fig. 1 have high multi-
plicity 0 and −1 eigenvalues which are not due to the pres-
ence of stars or cliques, respectively. In general, since the
relationship between a network and its spectrum is non-
trivial, determining general conditions for the presence and
strength of singularities in the spectral density is an open
analytic problem �19�.
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Based on the observation that high-multiplicity eigenval-
ues commonly associate with graph symmetries �27�, we ex-
amined the relationship between network symmetry and
spectral singularities. Since symmetry can take many
forms—cliques, stars, and rings are all symmetric, for
example—symmetry provides a flexible framework for inter-
preting the effect of a wide variety of redundant network
structures on eigenvalue spectra.

The structure of the remainder of the paper is as follows.
In Sec. II, we introduce some necessary background materi-
als on network symmetry. In particular, we examine the re-
lationship between network topology and automorphism
group structure and show how certain subgroups of the au-
tomorphism group can be related to specific network motifs.
In Sec. III, we consider how a network’s automorphism
group interacts with its spectrum and discuss how specific
eigenvalues and eigenvectors associate with these motifs. We
study in detail the most frequent of these motifs and their
contribution to the network’s spectrum. Finally, we close
with some general conclusions.

II. BACKGROUND

A network may be thought of as a graph, G
=G�V�G� ,E�G��, with vertex set, V�G� �of size N�, and edge
set, E�G� �of size M� where vertices are said to be adjacent if
there is an edge between them. An automorphism is a per-
mutation of the vertices of the network which preserves ad-
jacency. The set of automorphisms under composition forms
a group, G=Aut�G�, of size aG �28� �see Fig. 2 for an ex-
ample�. We say that a network is symmetric �respectively,
asymmetric� if it has a nontrivial �respectively, trivial� auto-
morphism group. Since automorphisms permute vertices
without altering network structure, a network’s automor-
phism group compactly quantifies the degree and nature of
the structural redundancy it carries. This correspondence be-
tween network symmetry and redundancy forms the basis of
the analysis we present in this discussion.

The support of an automorphism p is the set of vertices
which p moves, supp�p�= �vi�V�G� � p�vi��vi�. Two sets of
automorphisms P and Q are support disjoint if every pair of
automorphisms p� P and q�Q have disjoint supports. Ad-
ditionally, we say that the automorphism subgroups GP and

GQ generated by P and Q are ‘‘support disjoint’’ if P and Q
are. If this is the case, pq=qp for all p� P and q�Q and
hence xy=yx for all x�GP and y�GQ. Thus, if GP and GQ
are support disjoint, then we may think of them as acting
independently on the network.

This notion of independent action gives us a useful means
to factorize the automorphism groups of complex networks
into “irreducible building blocks” �14�. In particular, let G be
a network with automorphism group G=Aut�G� generated by
a set S of generators. Partition S into support-disjoint subsets
S=S1� ¯ �Sn such that each Si cannot itself be decom-
posed into support-disjoint subsets. Call Hi the subgroup
generated by Si. Since each Hi commutes with all others, we
can construct a direct product decomposition of G from these
subgroups

G = H1 � H2 � ¯ � Hk. �1�

This decomposition splits the automorphism group into
smaller pieces, each of which acts independently on the net-
work G. If the set of generators S satisfies two simple con-
ditions, the decomposition of Eq. �1� is unique �up to permu-
tation of the factors� and irreducible �14�. In this case, we
call each factor Hi a geometric factor and the direct product
factorization given in Eq. �1� the geometric decomposition of
G=Aut�G�. The motivation for this naming is that this fac-
torization relates strongly to network geometry: each factor
Hi may be related to a subgraph of G as follows.

The induced subgraph on a set of vertices X�V�G� is the
graph obtained by taking X and any edges whose end points
are both in X. We call the induced subgraph on the support of
a geometric factor H a symmetric motif, denoted MH. Thus,
H moves the vertices of MH while fixing the rest of the
vertices of G and MH is the smallest subgraph with this
property.

Figure 3 shows an example network constructed from a
variety of symmetric motifs commonly found in real-world
networks and its associated geometric decomposition. Table I

FIG. 1. High multiplicity eigenvalues can arise from a variety of
network structures. The first graph has high-multiplicity 0 eigen-
value but no stars, the second graph has high-multiplicity −1 eigen-
value with no cliques, and the third graph has both high-multiplicity
0 and −1 eigenvalues, yet contains neither stars nor cliques. The
first two graphs are examples of commonly occurring symmetric
motifs, as we explain later.

FIG. 2. A symmetric network. The permutation of the vertices
given by the rotation r of 120° around the central vertex is an
automorphism of the graph above, as are the reflections of �1, �2,
and �3 through each of the three arms. Together with a rotation of
240° and the identity �leaving every vertex fixed�, they form the
automorphism group G of the graph. Multiplication is composition
and we have G= �1,r ,r2,�1 ,�2=�1r ,�3=�1r2�. We say that the
group G acts on the graph because every element in G correspond
to a permutation of the vertex set which preserves adjacency �G is
the group of all such permutations�. The orbit of a vertex v is the set
of all vertices to which v can be sent by the action. Vertices are
colored by orbit: there are two orbits of size 3 and one orbit of size
1 �the central vertex is a fixed point of the G action�.
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shows how the factors in the geometric decomposition of this
network’s automorphism group relate to distinct symmetric
motifs in the network. Examples of geometric decomposi-
tions of real-world networks can be found elsewhere �14�.
Note that for simplicity, we consider networks as undirected
graphs; a directed version of this decomposition is straight-
forward.

Since large �Erdös-Rényi� random graphs are expected to
be asymmetric �30�, symmetric motifs are commonly over-
represented in real-world networks by comparison to random
counterparts. Thus, they may �loosely� be thought of as par-
ticular kinds of motifs �although undirected� as studied by
Milo and co-workers �11�. However, our definition is much
more restrictive than that of Milo and co-workers since we
single out motifs preserved by any �global� symmetry of the
network. Although this restriction means that we consider
only a small subset of possible network motifs, it is useful
since the presence of symmetric motifs may be directly
linked to network spectra in a way which is not possible for
general motifs.

III. SYMMETRY AND REDUNDANCY IN NETWORK
SPECTRA

The presence of singularities in the eigenvalue spectra of
real-world networks has been previously observed and rea-
sons for certain of these peaks have been discussed
�19,20,22,23�. In this section, we aim to extend these previ-
ous results by outlining a formal framework in which to
consider general spectral characteristics of redundancy. We
do so by considering interactions between a network’s auto-
morphism group and the eigenvalues of its adjacency matrix.

The adjacency matrix of a simple network G is the
N�N symmetric matrix

A = Aij = �1 if vi and v j are adjacent

0 otherwise.
	

The eigenvalues of G are the eigenvalues of its adjacency
matrix and the set of eigenvalues is the network’s spectrum.
For undirected networks, the matrix A is symmetric and
therefore all eigenvalues are real and there is an orthonormal
basis of eigenvectors. For the remainder of this discussion,
we shall focus on simple undirected networks.

The spectral density of a simple network G is the density
of its eigenvalues, which can be written as a sum of Dirac
delta functions

���� =
1

N


i=1

N

��� − �i� , �2�

where �i is the ith largest eigenvalue of G.
Consider p, a permutation of the vertices of G, which can

be represented by a permutation matrix P, where

P = Pij = �1 if p�vi� = v j

0 otherwise.
	

The relationship between network symmetry and eigenvalue
spectra depends centrally upon the fact that p�Aut�G� if and
only if A and P commute �27�. Thus, if x is an eigenvector of
A corresponding to the eigenvalue �, then Px is also an
eigenvector of A corresponding to �. Since Px and x are
generally linearly independent, this means that network sym-
metry �and thus redundancy� naturally gives rise to eigenval-
ues with high multiplicity and therefore singularities in the
spectral density. In the following sections, we shall develop
this result a little further and show how certain network ei-
genvalues may be associated directly with symmetric motifs.
First, we need to recall the notion of quotient graph.

TABLE I. Symmetric motifs, their associated geometric factors,
and eigenvalues. Vertices are colored by orbit and ghost edges and
vertices show how the symmetric motif attaches to the network. In
the second motif, the action is independent in each orbit, hence is
given as two geometric factors. Redundant eigenvalues �see Sec.
III B� are starred. Notice how different symmetric motifs give rise
to the same redundant eigenvalues. The complete spectrum of this
network is as follows: −2.7337, −2.3923, −2.2758, −2.0291,
−1.8546, −1.4181, −1.4142�, −1.1559, −1�, −1�, −1�, −1�, −0.2251,
0�, 0�, 0�, 0�, 0�, 0�, 0�, 0, 0.2712, 0.3812, 0.7218, 1�, 1�, 1.4142�,
1.7570, 1.9740, 2.2323, 2.4236, 2.9431, 3.3804. 15 of these eigen-
values are redundant �starred� and the remaining 18 form the spec-
trum of the quotient graph �see Sec. III A�. This situation is general
as explained later.

S2 [−1∗,−1, 1∗, 1]

S2 and S2 [−2, 0∗, 0∗, 2]

S3 [−1∗,−1∗, 2]

S4 [0∗, 0∗, 0∗, 0]

S2 [−1∗,−1, 1∗, 1]

S2 � S2 [−
√

2
∗
,−

√
2, 0∗, 0∗,

√
2
∗
,
√

2]

Symmetric Motif Geometric Factor Eigenvalues

(b)(a)

FIG. 3. An example network and its quotient. A network with
Aut�G�=S2�S2�S2�S3�S4�S2� �S2 �S2� �a� and its quotient
�b�. We write Sn for the group of all permutation of n objects and �
for the wreath product �29�, a mild generalization of the direct
product. Vertices are colored by orbit. Note that the quotient is a
multigraph but, for clarity, edge weights and directions have not
been represented.
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A. Network quotients

Since automorphisms permute vertices without altering
network structure, a network’s automorphism group may be
used to partition its vertex set V�G� into disjoint structural
equivalence classes called orbits �see Fig. 2�. For every ver-
tex v�V�G�, the set of vertices to which v maps under the
action of the automorphism group G=Aut�G� is called the
G-orbit of v, written �G�v� or simply ��v�. More formally,

�G�v� = �gv � V:g � G� .

Similarly, if H is a subgroup of G, the H-orbit of a vertex v
is the set

�H�v� = �gv � V:g � H� .

Since vertices in the same orbit may be permuted without
altering network structure, they are structurally indistinguish-
able from each other �that is, they play precisely the same
topological role in the network�. Thus, a network’s orbit
structure efficiently quantifies the degree of structural redun-
dancy the network carries. For example, the vertices in Fig. 3
are colored by orbit.

Since the vertices in each orbit are structurally equivalent,
they may be associated with each other to form the basis of a
network coarse graining known in the context of algebraic
graph theory as the quotient graph. More specifically, let �
= ���v1� ,��v2� , . . . ,��vs�� be the system of orbits which the
vertices of G are partitioned into under the action of G. Let
qij �i , j=1,2 , . . . ,s� be the number of edges starting from a
vertex in �i and ending in vertices in � j. Since the orbits
partition the vertex set into disjoint equivalence classes, qij
depends on i and j alone. The quotient Q of G under the
action of G is the multidigraph with vertex set � and adja-
cency matrix �qij�. We refer to the network G as the parent of
Q. Crucially, the quotient of G retains the unique structural
elements of G yet, by associating structurally equivalent ele-
ments, factors out all redundancy. Previous reports have
shown that quotients of many empirical networks can be as
small as 20% the size of their parent networks yet preserve
precisely key network properties which determine system
function �31�. Note that we can similarly define the quotient
of G under the action of any subgroup H of G �hence factor-
ing out just a fraction of the redundancy�.

A key result for the present discussion is that, for any
given graph G, set of eigenvalues of its quotient are a subset
of those of G �32�. Given a graph G with orbits �1 , . . . ,�m
and an eigenpair �� ,v= �v1 , . . . ,vm�� of the quotient graph Q,
then � is also an eigenvalue of the parent network G with an
eigenvector consisting of an identical value vi on all the ver-
tices of �i. Thus, a network’s automorphism group may be
used to construct a factorization of its characteristic polyno-
mial via its quotient. Additionally, since quotients carry less
repetition than their parent networks, we find that quotient
spectra generally contain less degeneracy than their parent
networks. Figure 4 illustrates this point by giving the spectral
densities of six representative �biological, social, and techno-
logical� networks and their quotients. As expected, in each
case, the spectral density of the parent network contains
peaks which are significantly reduced in the spectral density

of its quotient. In the following section, we will make this
relation more explicit by associating specific network eigen-
values with specific symmetric motifs. These, together with
the eigenvalues coming from the quotient, describe the entire
spectrum of the network.

B. Symmetric motifs and network spectra

There have been some previous attempts to spot the ei-
genvalues of key subgraphs in network spectra �23�. How-
ever subgraph eigenvalues are not usually contained in net-
work spectra and in general they only interlace those of the
network �32�. Nevertheless, certain eigenvalues associated
with symmetric motifs are retained in network spectra. We
call them redundant eigenvalues and they are described as
follows.

Recall the physical meaning of an eigenvalue-eigenvector
pair of an undirected graph. Consider a vector v on the ver-
tex set of a graph and write vi for the value at a vertex i.
Write on each vertex the sum of the numbers found on the
neighbors of that vertex. If the new vector is a multiple of v,
say �v, then v is an eigenvector with eigenvalue �. We shall
say that an eigenvalue-eigenvector pair �� ,v� of a symmetric
motif M=MH �considered as an induced subgraph� is re-
dundant if, for each H-orbit �H�M, the sum 
i��H

vi=0.
For example, in Table II, the redundant eigenvectors are
starred: the coordinates are separated by orbits and the sum
over each orbit is zero. Indeed, it can be shown that if M has
n vertices and m H-orbits, there is an orthonormal basis of
eigenvectors of M such that n−m of them are redundant and
the remaining m are constant on each orbit �see Appendix A�.

We say that an eigenvalue � is redundant with multiplicity
m if there are up to m linearly independent eigenvectors

−15 −10 −5 0 5 10 15
10

0

10
2

10
4

D
e
n
s
it
y

−15 −10 −5 0 5 10 15
10

0

10
2

10
4

−15 −10 −5 0 5 10 15
10

0

10
2

10
4

−6 −4 −2 0 2 4 6
10

0

10
2

10
4

−6 −4 −2 0 2 4 6
10

0

10
2

10
4

−6 −4 −2 0 2 4 6
10

0

10
2

10
4

Eigenvalue

PhD

US Power

media

Yeast PPI

c. elegans GR epa.gov (b)

(c) (d)

(e) (f)

(a)

FIG. 4. �Color online� Spectral densities of networks and their
quotients. In all cases, the spectral density of the parent is in dark
gray �blue� while that of the quotient is in light gray �red�. �a� The
c. elegans genetic regulatory network �33�. �b� The www.epa.gov
subnetwork �34�. �c� A media ownership network �35�. �d� A net-
work between Ph.D. students and their supervisors �36,37�. �e� The
U.S. power grid �9�. �f� The yeast protein-protein interaction net-
work �38�. Note that the y axis is on a logarithmic scale: in each
case, the differences in redundant eigenvalue multiplicities between
the parent network and its quotient are significant �see Table VII�.
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v1 , . . . ,vm such that all the pairs �� ,vi� are redundant. For
example, the eigenvalue 0 in the fourth motif of Table I has
multiplicity 4 but redundant multiplicity 3. The crucial prop-
erty is that redundant eigenvalues are retained, with their
redundant multiplicity, in the network spectrum: if �� ,v� is a
redundant eigenvalue-eigenvector pair of a symmetric motif
M, then �� ,v� is an eigenvalue-eigenvector pair for the
whole network, where v is formed by setting v̄i=vi for all
i�M and setting v̄i=0 for all i�M �39�. We call such an
eigenvector M-local: it is constructed from a redundant ei-
genvector of a symmetric motif M by setting entries to zero
on the vertices outside M.

The nonredundant eigenvalues of M will not, in general,
be retained in the network spectrum but rather will change
depending on how the motif is embedded in the network
�more precisely, on the topology of the quotient graph� �for

instance, see the examples in Tables I and II�.
Remark. The argument above applies naturally to sym-

metric motifs but not necessarily to single orbits: a redundant
eigenvector of an orbit will not necessarily give an eigenvec-
tor of the whole network �see, for instance, the closing re-
mark on Table V�. The reason is that it may not be possible
to treat one orbit on its own if the action is not “independent”
on this orbit. The smallest independent actions �and their
associated subgraphs� are precisely given by the geometric
factorization of Eq. �1�. The symmetric motifs are the small-
est subgraphs whose redundant eigenvalues survive to the
spectrum of the whole network.

On the other hand, consider the quotient graph of a net-
work G. Recall that if �� ,v� is an eigenpair of the quotient,
then �� , v̂� is an eigenpair of G, where v̂ is obtained setting
the identical value vi on all the vertices of the ith orbit. We
say that the eigenvector of the parent network v̂ is lifted from
the eigenvector v of the quotient.

The key result is that these two procedures explain com-
pletely the whole spectrum of G: if G has n vertices and m
orbits, we can find a basis of eigenvectors
v̂1 , . . . , v̂m ,vm+1 , . . . ,vn such that the first m are lifted from a
basis of eigenvectors of the quotient v1 , . . . ,vm and the re-
maining come from the redundant eigenvectors of the sym-
metric motifs of G �see Appendix B for full details and Table
II for examples�. Finally, note that the v̂i’s are constant on
each orbit and the vi’s are redundant on each orbit �the sum
of the coordinates is zero�.

Recall that the spectrum of the quotient graph is a subset
of the spectrum of the parent network. The redundant eigen-
values are exactly the ones “lost” in the spectrum of the
quotient graph �Appendix A�. Hence, the proportion of a
network’s spectrum due to redundancy is obtained by com-
paring the size of the parent graph to the size of its quotient.
This varies from network to network but can be as small as
20% �14�. Thus, this phenomenon is nontrivial and can ac-
count for up to 80% of the network spectrum.

Until now, we have been counting repeated eigenvalues
separately �that is, we have considered eigenpairs after fixing
an appropriate basis of eigenvectors�. What can we say about
the multiplicity of these redundant eigenvalues? There is no
general principle beyond the rule of thumb that eigenvalue
multiplicity is positively correlated with the size of the auto-
morphism group. For example, if a network has an orbit of n
vertices such that all the permutations of these vertices are
allowed �i.e., Sn acts naturally on the orbit�, then there will
be a redundant M-local eigenvalue with multiplicity at least
n−1 �see Appendix C�. Conversely, a graph with only simple
eigenvalues has an automorphism which is a subgroup of
S2� ¯ �S2 �32�.

One obvious question remains: what are the possible re-
dundant eigenvalues associated with symmetric motifs? In
principle, there is no restriction so we should rephrase the
question as: what are the most commonly occurring redun-
dant eigenvalues in “real-world” networks? We now address
this question by focusing on the most commonly occurring
symmetric motifs.

C. Basic symmetric motifs

Most symmetric motifs �typically more than 90%� found
in real-world networks conform to the following pattern

TABLE II. Examples of redundant spectra. Two symmetric mo-
tifs �top two� and their quotients �bottom two� are shown. Vertices
are colored by orbit and ghost vertices and edges show how each
motif attaches to a �hypothetical� network. In both cases, the under-
lying symmetric motif is V3�V3 �see Sec. III C and compare to
Table V� with geometric factor S3 permuting each orbit simulta-
neously. Eigenvector entries are separated by orbit. The eigenvalues
�1�2.30 and �2�−1.30 are the solutions of �2−�−3=0. Redun-
dant eigenvectors �the sum of the entries on each orbit is zero� and
their eigenvalues are starred. The redundant eigenvalues are the
same in both cases, while the nonredundant ones vary. Note that the
nonredundant eigenvectors are constant in each orbit. Observe also
that the number of redundant eigenvectors equals the number of
vertices minus the number of orbits �see Appendix A� and the quo-
tient graphs retain exactly the nonredundant part of the spectrum.

Symmetric Motif Eigenvalues Eigenvectors
1∗

1∗

−1∗

−1∗

2

−2

0

(1,−1, 0, |1,−1, 0, |0)∗

(1, 0,−1, |1, 0,−1, |0)∗

(1,−1, 0, | − 1, 1, 0, |0)∗

(1, 0,−1, | − 1, 0, 1, |0)∗

(1, 1, 1, |2, 2, 2, |3)

(1, 1, 1, | − 2,−2,−2, |3)

(1, 1, 1, |0, 0, 0, | − 1)

1∗

1∗

−1∗

−1∗

λ1

λ2

−λ1

−λ2

(0, |1,−1, 0, |1,−1, 0, |0)∗

(0, |1, 0,−1, |1, 0,−1|0)∗

(0, |1,−1, 0, | − 1, 1, 0, |0)∗

(0, |1, 0,−1, | − 1, 0, 1, |0)∗

(−λ2, |1, 1, 1, |1, 1, 1, | − λ2)

(−λ1, |1, 1, 1, |1, 1, 1, | − λ1)

(λ2, |1, 1, 1, |−1,−1,−1, |−λ2)

(λ1, |1, 1, 1, |−1,−1,−1, |−λ1)

2

−2

0

(1, 2, 3)

(1,−2, 3)

(1, 0,−1)

λ1

λ2

−λ1

−λ2

(−λ2, 1, 1,−λ2)

(−λ1, 1, 1,−λ1)

(λ2, 1,−1,−λ2)

(λ1, 1,−1,−λ1)
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�14�: they consist of one or more orbits of n vertices
�n�2� with a natural symmetric action, that is, the geometric
factor H �the subgroup of symmetries permuting only verti-
ces of the motif� consists of all the permutations of the n
vertices of each orbit and hence H=Sn. Therefore, each H
orbit is either the empty graph Vn or the complete graph Kn
on n vertices. Every vertex not in the motif is a fixed point
with respect to H and hence is joined to either all or none of
the vertices of each orbit. Moreover, two orbits may be
joined in one of only four possible ways shown in Table III
�for a proof, see �40��. For example, the graphs in Table I
would be, in this notation, V2�V2, V2�V2, K3, V4, and V2
�V2, while the last graph does not follow this pattern.

We call a symmetric motif as above a basic symmetric
motif �BSM�, while all others which do not conform to this
pattern we call complex. Complex motifs are rare �14� and
their spectrum can be studied separately. However, since
they have a constrained shape, it is possible to systematically
analyze all the possible contributions that BSMs make to the
spectra of the whole network. In particular, specific network
eigenvalues may be directly associated with BSMs. We have
carried this analysis out for BSMs up to three orbits. In all
cases, each redundant eigenvalue of a BSM will have multi-
plicity a multiple of n−1 �Appendix C�.

There are two symmetric motifs with one orbit, Kn and
Vn, and they are both basic. Their spectrum is shown in Table
IV. We use the notation ei for the �redundant� vector with
nonzero entries 1 in the first position and −1 on the ith po-
sition �2	 i	n� and 1 for the vector with constant entries 1.

As predicted, each motif has a redundant eigenvalue of
multiplicity n−1, which survives as an eigenvalue of the

same multiplicity in the spectrum of any network containing
such a subgraph as a symmetric motif. This amounts to the
usual association of the −1 and 0 eigenvalues to cliques and
stars, respectively, as discussed in previous publications.
However, our general setting now allows us to go further.

Before moving on, we make two brief observations. First,
note that the following BSMs cannot appear in practice. Call
a BSM reducible if it has an H-orbit � joined to all other H-
orbits � j by joints of type “�” or “�” �Table III�, that is, ��� j
or � �� j for all j. In this case, we would obtain an indepen-
dent geometric factor of type Sn just permuting the vertices
of �. For example, the second motif of Table I �a bifan� has
S2 and S2 as geometric factors. Such motifs are included in
our analysis as two separate symmetric motifs. Second, con-
sider the complement G of a graph G, that is, the graph with
same vertex set and complement edge set �two vertices are
joined in G if and only if they are not joined in G�. Note that
the complement of a BSM is also a BSM, replacing Kn by
Vn, � by �, � by q, and vice versa. If � is an eigenvalue of
a BSM with multiplicity p
1, then −�−1 is an eigenvalue
of the complement BSM with the same multiplicity �41�.

There are 12 BSMs with two orbits of n vertices: six of
these are nonreducible and it is sufficient to compute three
cases, since the other three are their complement. Table V
summarizes the results. The first two motifs have comple-
mentary spectra while the third is self-complementary. Ob-
serve that −1 and 0 arise again as redundant eigenvalues �and
hence survive in the network’s spectrum�, however, this time
they are associated with motifs other than stars or cliques.

Define RSpecm as the set of redundant eigenvalues of ba-
sic symmetric motifs up to m orbits. We have shown so far
that

RSpec1 = �− 1,0� and

RSpec2 = �− 2,− �,− 1,0,� − 1,1� ,

where � is the golden ratio.
For m�3 orbits, exactly the same analysis may be con-

ducted. However, the number of possible different BSMs
with m orbits increases dramatically with m. We have never-
theless computed the redundant eigenvalues of most BSMs
with three orbits, as shown in Table VI �42�. Observe that the
20 noncomplementary BSMs organize themselves into seven
different redundant spectrum types. We have therefore shown
that

TABLE III. Joints of two orbits in a basic symmetric motif. Two
orbits of n vertices can be joined in one of these four ways �possibly
after a suitable permutation of the vertices�: each vertex is joined to
either none, all, exactly one, or exactly n−1 of the vertices of the
other orbit. Each orbit can be either a complete or an empty graph
on n vertices. To illustrate these joints, we have taken both orbits to
be V3 �hence the graphs are bipartite� although the same argument
holds in the more general case.

∆1 ◦ ∆2

∆1 ∗ ∆2

∆1 ≡ ∆2

∆1 �� ∆2

Orbits Graphic notation Written notation

TABLE IV. Spectra of symmetric motifs with one orbit. The
geometric factor is always Sn. Redundant eigenvalues are starred.
Notice that 0 is an eigenvalue of Vn with multiplicity n but redun-
dant multiplicity n−1.

Kn

Vn

−1∗

n − 1

0∗

0

n−1

1

n−1

1

{ei}
1

{ei}
1

Notation Symmetric Motif Eigenvalue Multiplicity Eigenvectors
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�− 3,− 2,− 1,0,1, � 2, � 3,− 1 � 2,

− 1 � 3,1,2,3,�1,�2,�3� � RSpec3.

It would be interesting to find out all the possible eigenval-
ues of BSMs of any number of orbits if there is a pattern.
However, this is a purely mathematical problem since their
relevance �i.e., frequency� in real-world networks decays
rapidly with the number of orbits.

In order to place these abstract results in a more concrete
setting, we have computed spectral characteristics of redun-
dancy in the real-world empirical networks whose spectra are
given in Fig. 4. All high-multiplicity eigenvalues of these
networks are listed in Table VII. Note that, with the excep-
tion of �5 in the spectrum of the network of ties between
Ph.D. students and their supervisors—which comes from the
complex motif shown in Fig. 5—each redundant eigenvalue
is in our set RSpec3.

IV. CONCLUSIONS

Due to the forces which form and shape them, many real-
world empirical networks contain a significant amount of
structural redundancy. Since structurally redundant elements
may be permuted without altering network structure, redun-
dancy may be formally investigated by examining network
automorphism groups. By considering the relationship be-
tween network topology and automorphism group structure,
we have shown how specific automorphism subgroups may
be associated with specific network motifs. Furthermore, we
have shown that certain network eigenvalues may be directly
associated with these symmetric motifs. Thus, we have ex-
plained how the presence of a variety of local network struc-

tures may be seen in network spectra and have shown that
the portion of a network’s spectrum associated with symmet-
ric motifs is precisely the part of the spectrum due to redun-
dancy. In addition, we have computed the redundant spec-
trum of the most common symmetric motifs up to three
orbits and any number of vertices and demonstrated their
presence in a variety of real-world empirical networks. Al-
though the theoretical details are somewhat involved, in

TABLE V. Spectra of basic symmetric motifs with two orbits.
Redundant eigenvalues are starred. Eigenvector coordinates are
separated by orbit �x �y�. The eigenvalues �i are the roots of �2

+�−1, that is, �1=�−1= −1+5
2 �0.6180 and �2=−�= −1−5

2 �
−1.6180, where � is the golden ratio. For completeness, we also

give an= n−1
2 +

n2−2n+5
2 and bn= n−1

2 −
n2−2n+5

2 , although they are not
redundant. Observe that the redundant eigenvalues of each single
orbit �−1 and 0 for Kn, respectively, Vn� do not occur in the spec-
trum of the corresponding BSM.

Kn ≡ Kn

0∗

−2∗

n
n − 2

n − 1
n − 1

1
1

{(ei|ei)}
{(ei|−ei)}

(1|1)
(1|-1)

Vn ≡ Vn

1∗

−1∗

1
−1

n−1
n−1

1
1

{(ei|ei)}
{(ei|−ei)}

(1|1)
(1|-1)

Kn ≡ Vn

λ∗
1

λ∗
2

an

bn

n−1
n−1

1
1

{(λ1ei|ei)}
{(λ2ei|−ei)}

(an1|1)
(bn1|-1)

Symmetric Redundant
Notation motif Eigenvalue multiplicity Eigenvector

TABLE VI. Spectra of basic symmetric motifs with three orbits.
Only redundant eigenvalues � are shown and their complements
−�−1 corresponding to complement motifs. Here, i are the roots
of the polynomial p���=�3+�2−2�−1, that is, 1�−1.8019, 2

�−0.4450, and 3�1.2470. The complements �i=−1−i are the
roots of the polynomial p�−1−��=−�3−�2+�+1: �1�−2.2470,
�2�0.5550, and �3�0.8019.

λ

−1

2

0
√

2

−
√

2

1

−2

−1
√

3

−
√

3

−1

−1+
√

2

−1−
√

2

µ1

µ2

µ3

0

1

−2

2(n−1)

n − 1

n − 1

n − 1

n − 1

2(n−1)

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

n − 1

1−λ −

0

−3

−1

−1−
√

2

−1+
√

2

−2

1

0

−1−
√

3

−1+
√

3

−2

−
√

2
√

2

ν1

ν2

ν3

−1

−2

1

Notation Redundant multiplicity

SPECTRAL CHARACTERISTICS OF NETWORK REDUNDANCY PHYSICAL REVIEW E 80, 026117 �2009�

026117-7



practice, it is not difficult to find the redundant portion of a
network’s spectrum and its associated symmetric motifs,
even for large networks, using the NAUTY algorithm �43� and
a computational group theory package such as GAP �44�.

In summary, the symmetry approach we have outlined in
this paper confirms previous results connecting network
spectra with simple local network structures. Additionally,
since symmetry can take many forms, this approach also
extends these results by providing a general means to relate
network eigenvalues to a variety of disparate network struc-
tures in a simple, flexible algebraic manner. However, our
results are limited by the very nature of the automorphism
group: only global symmetries are taken into account and
they fail to measure other internal symmetries �as opposed to
the purely combinatorial motifs of Milo and co-workers
�11��, since they are very sensitive to the addition of new
vertices. It would be interesting to relax the group notion to
that of a groupoid �45� to see if these results can be extended
in this more general setting.
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APPENDIX A

Let G be a graph with n vertices and adjacency matrix
A= �aij�. Suppose that the action of G=Aut�G� on G has m G-
orbits. We show that there is an orthogonal basis of eigen-
vectors v1 , . . . ,vn such that v1 , . . . ,vm are constant on each
G-orbit and vm+1 , . . . ,vn are redundant �the sum of the coor-
dinates at each G orbit is zero�.

The proof that follows is a consequence of well-known
results in graph theory �see for instance chapters 8 and 9 in
�46��. A partition �= �C1 , . . . ,Cr� of the vertex set of G is
called equitable if the number of neighbors in Cj of any
vertex in Ci is a constant bij. For example, the orbits of any
subgroup of Aut�G� gives an equitable partition. The quotient
of G by an equitable partition �, denoted G /�, is the directed
multigraph with r vertices and adjacency matrix B= �bij�.
The characteristic matrix of a partition � is the n�r matrix
P= �pij� such that pij =1 if the ith vertex of G belong to Cj
and 0 otherwise. That is, in column notation P= �w1�¯ �wr�,
with wj the vector with 1’s in the vertices of Cj and 0 else-
where. We have that P is the characteristic matrix of an
equitable partition if and only if

AP = PB , �A1�

since the �i , j� entry of either matrix is the number of neigh-

TABLE VII. High multiplicity eigenvalues in empirical net-
works. All high-multiplicity eigenvalues � of the networks of Fig. 4
are given along with their multiplicity mP in the parent network and
multiplicity mQ in the quotient network. The redundant multiplicity
mP−mQ is explained by symmetry in the network, as described in
the main text. Observe that all redundant eigenvalues �mP−mQ

0� are in the set RSpec3 except �5 in the spectrum of the
network of ties between PhD students and their supervisors, which
is due to the complex motif in Fig. 5. Note that redundant eigen-
values may nevertheless come from different BSMs or indeed com-
plex motifs in some cases.

Network � mP mQ

c.elegans GR −1 147 6

0 212 45

epa.gov −1 23 0

0 2532 518

1 8 4

Media −2 2 0

−2 13 6

−1 32 6

0 3621 119

1 33 7
2 13 6

Ph.D. −5 2 1

−3 3 3

−2 6 0

−1 27 4

0 507 51

1 27 4
2 6 0
3 3 3
5 2 1

U.S. Power −2.9150 2 2

−� 5 0

−2 13 3

−1 73 15

0 593 241

�−1 5 0

1 40 14

1.1552 2 2

1.4068 2 2
2 14 4

Yeast PPI −2 2 0

−1 28 9

0 564 154

1 9 2
2 2 0

FIG. 5. A complex symmetric motif and its spectrum. This com-
plex motif appears in the network of ties between Ph.D. students
and their supervisors �36,37�. Its spectrum is �−5*,
−5,0* , . . . ,0* ,0 ,5*,5�. The redundant eigenvalues of this mo-
tif �starred� survive in the spectrum of the network as a whole.
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bors of the ith vertex in Cj. A subspace U is called
A-invariant if Au�U for all u�U. Note that Eq. �A1� is
equivalent to saying that the space W spanned by the col-
umns of P is A invariant. One can show �46� that every
nonzero A-invariant subspace has an orthogonal basis of
eigenvectors. Furthermore, the orthogonal complement of an
A-invariant subspace is also A-invariant �46�. Consequently,
we can write Rn=W � W� and find an orthogonal basis of
eigenvectors of W and another for W�. Finally note that:

�1� dim�W�=r.
�2� u�W⇔u is constant on each Cj.
�3� u�W�⇔ the sum of the coordinates of u on each cell

is zero.

APPENDIX B

Suppose that G is a graph with n vertices and m G-orbits,
where G=Aut�G�. Consider the associated geometric decom-
position, G=H1�H2� ¯ �Hk and corresponding symmet-
ric motifs M1 , . . . ,Mk. Suppose that Mi has ni vertices and
mi Hi- orbits �which then coincide with the G-orbits�. Call n0
to the number of fixed points in G. Then we have

n1 + ¯ + nk + n0 = n and m1 + ¯ + mk + n0 = m .

For each motif Mi, we can apply the result in Appendix A to
find an orthogonal basis of eigenvectors such that ni−mi of
them, say �v j

i�, are redundant. Hence, they give Mi-local

eigenvectors �v j
i� of G for each 1	 i	k. Note that the v j

i’s
are pairwise orthogonal and hence in particular are linearly
independent.

Now choose an orthogonal basis of eigenvectors of the
quotient, �w1 , . . . ,wm�. Each ŵi is an eigenvector of G, con-
stant on each orbit. Then �ŵ1 , . . . , ŵm�� �v j

i� is an orthogonal
system of m+ �n1−m1�+ ¯ �nk−mk�=m+n−n0−m+n0=n
vectors, that is, an orthogonal basis of eigenvectors of G.

APPENDIX C

Let M be a graph with an orbit of n vertices x1 , . . . ,xn
such that all n! permutations of the vertices are automor-
phisms of M. We demonstrate that there is a redundant ei-
genvalue � of redundant multiplicity at least n−1.

We can assume that n�2. Let �� ,v� be a redundant
eigenpair �there is at least one, by Appendix A�. Suppose that
v1 , . . . ,vn are the entries of v at x1 , . . . ,xn. Recall that any
permutation of the vi’s �fixing the other entries� gives an
eigenvector of the same eigenvalue. Since v is redundant, it
cannot be constant on the orbit, thus we can assume without
loss of generality that v1�v2. Let � be a permutation inter-
changing the first and second coordinates while fixing the
other n−2 entries in the orbit. Thus v−�v is a multiple of the
vector with values �1,−1,0 , . . . ,0� on the xi’s. Further per-
muting the coordinates gives n−1 linearly independent
eigenvectors of �, as required.
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